Tag Archives: Twitter API

Millä Suomi twiittaa?

Vielä kerran suomenruotsalaisen ja suomalaisen tweettailun eroista ja yhtäläisyyksistä.

Twitter-klienttien Top4-järjestys on sama, mutta suomenruotsalaisilla Twitter for iPhone on selvästi suositumpi kuin TweetDeck. Suomenkielisten käyttämien klienttien kirjo taas on paljon suurempi. Testaillaanko siellä enemmän uutta? Jaetaan aineistoa enemmän suoraan muista lähteistä? Vertailuaineistojen koko on sama (n. 12000 tweettiä), mutta aineistot eivät ole täysin vertailukelpoisia keskenään, koska suomalaisia on 20 enemmän. Mitä enemmän ihmisiä, sitä enemmän erilaisia klienttejä, luultavasti.

Suomalaisten Top 5:

  1. Twitter.com
  2. Twitter for iPhone
  3. TweetDeck
  4. Twitter for iPad
  5. Tweet Button (suomenruotsalaisilla 8.)

ja suomenruotsalaisten:

  1. Twitter.com
  2. Twitter for iPhone
  3. TweetDeck
  4. Twitter for iPad
  5. Twitter for Android (suomalaisilla 9.)

Pistekaavioiden ulkoasussa on runsaasti toivomisen varaa, mutta yleiskuva erottunee: suomalaiset (PDF) ja suomenruotsalaiset (PDF). R-koodi klienttitiedon hakuun ja käsittelyyn.

tweetsfinswe

Top twittrare

Här är svenskfinlands bästa twittrare, meddelade Yle X3M idag. Fint! För jämförelsens skull bedrev jag nu lite hembakad text mining också med tweeps av de här 80 personer. Urvalets storlek är detsamma som förr: 200 per person.

AFAIK så finns det ingen officiell Twitter list. Därför kunde jag inte direkt använda den gamla koden utan måste först plocka ut namn ur den ovannämda websidan.

Klustren ser en smula olika ut här än i den finska. Med mina helt amatörmässiga 3D text mining glasögon kan jag urskilja en aning mera variation i ordförråd. Men, det kan helt enkelt bero på hur det svenska språket är uppbyggt (och hur R och dess tm paket manipulerar text), och inte säga någonting alls om våra inhemska, svenskspråkiga Twitter-vänner. Artiga och vänliga tweeps här också.

Två personer tycks vara särskilt flitigt refererade, vilket tyder också på aktivt personligt twittrande: Peppe Öhman (peppepeppepeppe) och Sandra Eriksson (sandraeeriksson).

tweets

Keskiraskas louhinta

Eiliseen verrattuna levyn nurkalla on nyt melkein 50 kertaa isompi otos, reilut 20000 tweettiä. Jokaiselta listan jäseneltä 200, hänen omalta aikajanaltaan. GET statuses/user_timeline -API-määrittely lupaa maksimiksi 3200 per nenä, mutta silloin mukana voivat olla (paluuformaatista riippuen) myös ns. natiivit retweettaukset. Annoin ne tulla mukaan.

En viitsinyt koputella tweetkattoa, vielä. Pöytäkoneella oli jo tekemistä tämänkin tekstikorpuksen käsittelyn kanssa. Erityisen hidas oli stopwordien poisto-operaatio.

Käyttäjänimistä on jäljellä enää listan perustaja Niku Hooli, mikä ei yllätä; lista on uusi juttu, ja siitä ja sen perustajasta on tietysti (re)tweetattu paljon. Sitä en sen sijaan ymmärrä, miksi the keikkuu edelleen mukana ja huipulla, vaikka lisäsin sen stopword-listaan. Täytyy joskus kaivella lisää.

Tuloksesta voi varovaisesti piirtää kuvaa yhteisöstä, jonka aktiivisimmat sanankäyttäjät ovat kohteliaita, kilttejä ja ajan hermolla. Sosiaalisen median käytäntöjen ammattilaisia.

Koodinpätkästä puuttuu louhintaosuus. Se on sama kuin ennenkin.

tweets1

Tekstinlouhintaa SuomiTop100-listalla

Yle uutisoi juhannuksen alla: Tutustu heihin – 100 kiinnostavaa suomalaista Twitterissä. Amatöörilouhijalle tällainen kotimainen Twitter-ryhmä tarjoaa mukavan tutkimuskohteen. Mitä sanoja top-tweettajat käyttävät? Minkähän takia? Missä yhteydessä?

Blogista Heuristic Andrew löytyi selkeä ohje juuri tähän, tekstin louhintaan Twitteristä R:n avulla.

Hankalinta on saada tarpeeksi louhittavaa. Kohtuullisella hikoilulla sain koottua listalta reilut 500 tweettiä. En juuri tunne Twitterin API:a, joten saatoin hyvinkin olla väärän lähteen äärellä. Olisiko statuspäivitykset pitänyt sittenkin kerätä listan sijaan jäsenten omalta aikajanalta? Harkitsin tätä. Idea kuivahti alkuunsa siihen, että en pystynyt poimimaan rajapinnan kautta listan kaikkia jäseniä vaan vain 20. Joistakin foorumikirjoituksista jäi itämään epäilys, että tämä olisi API:n rajoitus. Luultavammin rajat ovat kuitenkin näiden korvien välissä. No, hyvä että materiaalia on edes jonkin verran.

R-koodin seasta löytyy kommentteja työn etenemisestä ja havaintoja tuloksista. Silmiinpistävää on sanaston heterogeenisuus. Esiin nousevat oikeastaan vain Twitter-kommunikoinnin säätimet, sanat joilla osoitetaan mistä oma teksti on peräisin. Aineisto on lisäksi monikielistä, joka vähentää sanojen toistumistiheyttä näin pienessä otoksessa.

Kuten Heuristic Andrew, minäkin tein ryhmittelyanalyysin (cluster). Sen kuvaus on puumainen dendrogrammi. Mitä ylempänä oksa on, sitä enemmän on sen lehvästössä olevien sanojen esiintymisiä. Lähekkäin ja saman punaisen kehyksen sisällä olevat oksat kertovat siitä, että niiden sanoilla on tiettyä yhteyttä toisiinsa. Kehyksiä on tässä seitsemän, kokeilin pienempääkin. Oikeaan laitaan syntyi nyt hieman turhankin iso kaatoluokka.

Dendrogrammin lukeminen on työlästä, koska niskaa pitää kääntää 90 astetta vasempaan. Epäilemättä löytyy tapa, jolla kääntyy graafi, ei pää.

Tämän harjoituksen pohjalta ei pysty sanomaan juuri mitään siitä, mitä, miten ja miksi Suomi twiittaa. Joitakin arvailuja voi esittää. Saattaa olla, että sanonnat (quote) ja lainaukset (via) ovat melko yleisiä. Mahdollisesti jotkut listan jäsenet ovat suositumpia viittauksen kohteita kuin muut. Jälkimmäinen päätelmä on itse asiassa tavallaan louhinnan sivutuote; samalla kun kaikki välimerkit siivottiin pois, lähti myös käyttäjänimen edestä @-merkki, jolloin henkilöä kuvaavasta nimestä tuli ns. tavallinen sana.